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G. N. Lewis' Atom and Quantum Monte Carlo 
Studies of Liquids 

R. Wo Hall and P. G. Wolynes l 

Liquids that involve changes in electronic structure are difficult to simulate 
using pairwise additive forces. In this paper we use a semiempirical model of the 
internal structure of atoms in order to simulate simultaneously electronic and 
nuclear dynamics of fluids. The proposed excitonic phase of mercury is critically 
examined with these models. 
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1. I N T R O D U C T I O N  

The Monte Carlo method pioneered by Metropolis and co-workers (1) at 
Los Alamos has played a revolutionary role in changing the rules of 
argument in liquid state physics. Before the introduction of the Monte 
Carlo method and its sister, molecular dynamics, (2/liquid state theory con- 
sisted of either austere mathematical  formalism (e.g., the integral equation 
approach (3)) or unbridled but picturesque scenario building (e.g., Eyring's 
significant structure theory(4)). Both of these latter approaches can still be 
useful because they provide simple ways of thinking about complex 
problems. Nevertheless, the Monte Carlo method provided rich data sets 
that allowed fundamental tests of these ways of thinking. One could not 
blame the lack of agreement of a theory with Monte Carlo on errors in 
potential energy functions. Some theories were discarded and new ones 
introduced. The discipline provided by these computer  experiments, instead 
of killing the field, led to a flowering of new and (perhaps) correct ideas. 

There are areas of liquid state theory (and chemical physics, in 
general) which have been relatively untouched by this revolution. Because 
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the usual simulation approach is founded on the idea of a simple potential 
energy function, there has been little work on simulating systems in which 
the electronic structure changes substantially with nuclear rearrangement. 
Thus, molecular fluids are well-understood, but systems such as liquid and 
amorphous semiconductors, electrons in polar fluids, and expanded fluid 
metals are still areas for relatively undisciplined speculation. Perhaps more 
importantly, any problem in chemistry in which bonds are made or broken 
is still difficult to approach in the condensed phase. Clearly, to go beyond 
this stage one must simulate the electronic and nuclear motion 
simultaneously. This immediately immerses the simulator in quantum 
mechanics, a sometimes unfamiliar territory. 

Recently, several approaches to this simulation problem have been 
developed. One powerful approach is entirely ab initio. ~5) Using the 
Green's function Monte Carlo scheme, Alder, Ceperley, and co-workers 
have simulated many of the condensed phases of hydrogen. This method, 
at least superficially, appears to scale up only with difficulty to higher Z 
elements. Thus, impatient investigators are tempted to invent semiempirical 
models to simulate more complex systems. Such models, of course, are not 
guaranteed to simulate actual systems, but we should remember Lennard- 
Jonesium is not real argon. The study of semiempirical quantum models 
can act to discipline analytic theory and scenario-building in the same way 
as the early classical Monte Carlo studies of liquids disciplined liquid 
theory. 

One kind of semiempirical approach, the pseudopotential, is based on 
a single particle picture of the electronic structure. This model is quite 
appropriate for systems such as the solvated electron which has been much 
discussed at this meeting. ~6) The pseudopotential picture ~v) is easy to inter- 
face with path integral quantum mechanics. The path integral quantum 
mechanism can be implemented in a Monte Carlo procedure by utilizing 
the isomorphism with polymer statistical mechanics. ~s) Other one-electron 
problems can be approached in this way also. At Illinois we are using it to 
study electron tunneling in proteinsJ 9) 

Another semiempirical approach is the use of X~ or density functional 
theories to calculate energies in a Monte Carlo run. Here the electron's 
dynamics is done by an extension of standard quantum chemical theory. 
Car and Parrinello ~1~ have begun to use this approach for amorphous 
silicon. Because the underlying quantum chemical theory ignores important 
correlation effects, situations in which bonds are made or broken may not 
be treated well. Further experience may show this kind of problem not to 
be fatal. 

We want to describe another semiempirical approach in this article. 
The model is motivated as much by ease of simulation as by fidelity to 
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nature (although we do feel it is not bad in this respect). Lattice models 
have been used extensively in quantum Monte Carlo studies in particle 
physicsJ 11) Piech and Wilson ~12) introduced similar models for atoms but 
this development had not been extensively followed up. It turns out this 
model is very reminiscent of early twentieth century atomic models of 
G. N. Lewis, and we illustrate in this paper how they may be used to 
simulate electronic state dynamics in liquids. The particular system that we 
chose to model is expanded-fluid mercury. This system was chosen because 
it seems to have an unusual phase transition in which electronic dynamics 
is important. (13) 

The organization of the paper is as follows. We first discuss the lattice 
atom model and how Monte Carlo can be used to simulate it. Second, we 
discuss the puzzling phenomena in expanded mercury and one scenario for 
the transition according to Turkevich and CohenJ 14) Third, we show how 
the simulations relate to this scenario. 

2. T H E  L A T T I C E  A T O M  A N D  P A T H  i N T E G R A L  M O N T E  C A R L O  

One of the crucial early ideas in structural chemistry is the notion of 
directed bonds. A good zeroth order understanding of organic chemistry 
comes thinking of electrons in a saturated carbon atom as sitting at the 
corners of a tetrahedron, each one capable of forming a bond. We now 
know this is due to the sp 3 hybridization of the atom caused by its interac- 
tion with bonding partners. We usually think of the hybridization as 
changing when the neighbors change (e.g., in unsaturated hydrocarbons the 
hybridization is sp 2) although other descriptions such as bent or banana 
bonds have also been postulated. 

Because of this important feature of directionality (and some other 
things such as the octet rule) G. N. Lewis postulated a lattice model of the 
electronic structure of the atom in 1923. ~15~ A picture from his notebook is 
reproduced in Fig. 1. The Lewis model was a classical one; the electrons 
essentially sit at the lattice sites. 

The quantum mechanical extension of the Lewis model is not difficult 
to imagine. One must allow transfer of the electrons from site to site. This 
is exactly what was done by Piech and Wilson. (12~ In second quantized 
notation their Hamiltonian for an isolated atom is 

+ +  1 H= A , t ~ , + $ , + ~  Vnmt~m$ n $ m $ n + t ~ ( t p + ( ~ , + $ + $ m  ) (1) 
m m 
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Fig. 1. A page from G. N. Lewis' notebook showing his lattice models of atoms. This is 
reproduced from Ref. 15. 

~+ is the creation operator for an electron on a site, ~ ,  is the annihilation 
operator, t is the transfer matrix element, Vnm the electron interaction term, 
and A n the site energy. (A semiempirical model would treat only the 
valence electrons with renormalized matrix elements.) 

Let us now imagine a single valence electron atom. If the atom is 
isolated it will transfer between all the sites, thereby blurring out to have 
nearly spherical (cubic) symmetry. In the presence of an external field it 
will spend more time on one of the sites than the others. It will have 
rehybridized into a directional orbital. 

How do we use this picture for a many-a tom system? Ideally one 
should allow the electrons to hop from atom to a tom and retain the direct 
electron-electron Coulomb interactions. For  an arbitrary nuclear con- 
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figuration the system then is like a random lattice fermion model, (16) with 
all of its concomitant difficulties. For some problems we can suppress the 
interatom electron hopping. When hopping occurs an ionic configuration is 
transiently formed. This is higher in energy than the neutral configurations. 
We should bear in mind that condensed phase effects can make ionic con- 
figurations more favorable, but our models will not deal with this. If the 
ionic configurations are projected out, one is left with new effective interac- 
tion between electrons on different atoms. This is the weak exchange limit 
of the chemical bond. (Iv) Thus we take the electron-electron interactions 
between different atoms as an adjustable function, much like the inter- 
molecular potential in a conventional simulation. With the suppression of 
interatom hopping the usual fermionic difficulties are ameliorated--for one 
and two electron atoms in singlet states they are eliminated. 

In the model problem that we have chosen to study the mercury atom 
behaves as a one-electron atom. This is because the physics of mer- 
cury-mercury interactions is thought to arise from single particle excitation 
on each atom. When an electron sits on a lattice site the atom has a dipole. 
These dipoles then interact through electrostatic potentials. Thus our 
Hamiltonian is a simplified version of (1). The Hamiltonian can be written 
a s  

H= ~. H~~ ~ )l~" T U" ~j+ ~ Uo(r~, rj) 
i i < j  i < j  

We have allowed the instantaneous dipole of the atom to be given by 
discrete values in which the dipole is pointed at the vertices of a cube cen- 
tered on the atom. These values are labeled by the set {~i} for each atom; 
H~ ~ is the internal electronic Hamiltonian which allows transitions between 
different {lai} states, with matrix elements t~ = - % / 2  if i and j are nearest 
neighbors and 0 otherwise. ~Oo is the atomic excitation frequency. The 
valence electrons interact through the dipole~:lipole potential --ILiTu'~j. 
The core electrons provide a repulsive core which we model by a hard- 
sphere potential Uo(ri, rj). 

To carry out the simulation we treat the nuclei classically but the elec- 
trons' dynamics must be treated quantum mechanically. This is allowed 
because of the Born-Oppenheimer approximation. To treat both electrons 
and nuclei on the same footing we use path integral techniques. (8) We find 
the equilibrium properties of this model from the P-point discretized path 
integral representation of the partition function, Z - t r { e  ~H} = 
tr{(e eH/P)P}. In this isomorphism the internal state of the lattice atoms is 
represented by a ring of P instantaneous moment positions (It (1), 
la(2),..., la(P)). The resulting approximate partition function is 
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(PtN'rN le-~*l lt~v' r~v> ~ [k[]=l g ( r k -  r~,)] 

where A = exp [ - e~0o ]- 

C - - e Y ' i < j u o ( r i , r j )  ~ 

(/)= ~ ([IJl, l--[[I,l) 2 (1-1- A~ 
z=l 4el#l z In\~-AJ 

1 
2 ~ {lli'Tij'[tJq-lt;'Tij'~J} 

i < j  

P 
zp=f dRN 2 e--eZi<juo(ri'r;) l-I e-~'~'"~+~/P (2) 

" u% ~ - 1 k =  J 

Because Ho does not commute with the interaction this expression is exact 
only as P--+ oo. In fact we find that P =  150 is sufficient for roughly 5% 
accuracy in binding energies. Even though only classical quantities are 
involved in (2), Zp cannot be evaluated exactly for the many-particle 
system. The probability distribution for dipole moments and configurations 
can, however, be sampled via standard Metropolis Monte Carlo methods. 

The Monte Carlo evaluation of the path integral sum is essentially 
calculating a fully correlated, highly nonadditive potential function for each 
nuclear configuration. In addition we can find out directly about  the static 
electronic structure and limited time-dependent information from the 
imaginary-time dipole-dipole correlation function. 

3. PUZZLES OF E X P A N D E D  FLUID M E R C U R Y  

Under ordinary conditions mercury is a metallic liquid. Dilute gaseous 
mercury, however, is an insulator. One of the oldest questions that is still 
unresolved is, what is the relationship between the liquid-gas transition 
and the metal-insulator transition? One of the problems in understanding 
this is that the interatomic interactions are very different in the two states. 
In the dilute gas the mercury atoms are merely highly polarizable atoms 
interacting through weak Van der Waals interactions. In the liquid the 
valence electrons are "disassociated" and are thought to provide cohesive 
energy through their attraction with the positive ionic cores. ~ 

Despite the difficulty of dealing with high pressure and high tem- 
perature corrosive fluids, numerous experimental studies of expanded fluid 
metals have been carried out with the goal of understanding these 
questions. ~ One of the most important probes is the measurement of 
dielectric constants. The static dielectric constant of a metal is infinite, 
while for an insulator it is finite. In addition, one of the oldest theories of 
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the metal-insulator transition identifies the transition with dielectric 
instability of a model of interacting Drude model atoms. In this theory of 
Herzfeld's ~2~ the valence electrons are held by harmonic restoring forces to 
their respective nuclei in the insulator. When immersed in a polarizable 
medium, the restoring force is reduced by the reaction field from the 
surrounding medium. This increases the polarizability self-consistently. 
Eventually a catastrophe ensues. 

When the dielectric measurements were carried out at Marburg ~13) an 
anomaly was discovered. At low density the dielectric constant obeyed the 
Clausius-Mossotti relation. However at 1800K and density p ,,~ 3.3 g/cm 3, 
the dielectric constant shot up from values of around 2 to values around 
10-20. Many scenarios for this behavior have been put forward. 14 For a 
review, see Ref. 19. Although the conductivity does not change much, self- 
trapped negative ion states have been proposed, (21) Because of the nearness 
to the critical point, another possibility might be some peculiar critical 
phenomena. Wetting has been proposed as an explanation. ~22) Another 
possibility is conduction along giant metallic clusters. 

One of the most exciting possibilities is that this is an example of an 
excitonic phase. Such phases in which excitons condense into a 
macroscopically occupied state were first postulated by Kohn ~23) as inter- 
mediate phases in the metal-insulator transition. Turkevich and Cohen (14) 
have explained the dielectric anomaly by assuming that it is such an 
excitonic transition which is seen. Their scenario is consistent with a large 
number of related observations about the mercury phase diagram. 

The physical nature of the excitonic transition is easiest to understand 
in a localized picture of the exeitons. We use the Frenkel rather than Wan- 
nier picture. A single mercury atom has a 1S ground state. It has both 
triplet and singlet excited states with P symmetry at energies of 4.9 and 
6.7 eV higher, respectively. There is a large transition dipole, oscillator 
strength f =  1.184, connecting the ground and excited singlet states. This is 
responsible for the intense emission in mercury vapor lamps. If the mercury 
atom is in a state which is a superposition of the two states (that is, if the 
mercury atom changes hybridization), it then achieves a large dipole 
moment. This large dipole moment can then polarize its neighboring 
atoms. The resulting reaction field enhances the polarizability of the atom 
just as in the Herzfeld scenario for the metal-insulator transition. If there 
are a sufficient number of neighbors, the reaction field can overcome the 
energy cost of rehybridizing the atom entirely, and an effectively dipolar 
mercury atom would result. In a Drude atom the electron could dissociate, 
but this is impossible without more states. In this way the dielectric con- 
stant of the mercury would be greatly enhanced. In the Turkevich-Cohen 
scenario the dipoles then align and the material is ferroelectric. A smaller 
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enhancement of the dielectric constant would arise even if the stabilized 
dipoles did not align but remained pinned to a local frame determined by 
the instantaneous atomic positions. This would be a paraelectric (or 
equivalently, a quantum pseudo-spin glass phase in which the "spins" are 
electric dipole moments). 

When mercury atoms rehybridize, their effective interactions change. 
The permanently dipolar atoms bind much more strongly. A similar 
situation has been found by Dykstra in magnesium clustersJ 24) Using ab 
initio methods Dykstra has shown that Mg2 is a weakly bonded van der 
Waals molecule. On the other hand, Mg 4 is a strongly bonded molecule. 
The binding energy comes from a correlation effect which involves S to P 
excitation as is envisioned in the excitonic model of mercury. The analogy 
is further plausible because of the similarity of the valence configuration of 
Hg and Mg. (25) 

The clustering that is concomitant upon rehybridization is an essential 
element of the Turkevich-Cohen scenario. Clusters of mercury atoms also 
figure in Bhatt and Rice's (26) treatment of the dielectric properties of mer- 
cury. 

It is clear that the essential elements of the Turkevich-Cohen scenario 
are contained in a one-electron per atom, lattice atom model as discussed 
in the last section. We therefore proceed to simulate it. 

4. C O M P U T A T I O N A L  DETAILS A N D  R E S U L T S  

The calculations were carried out on an FPS 164 Array processor. 
Due to computational limitations these exploratory studies used only 
32 atoms in a periodic box with a hard sphere radius of 5.059 ~ and a tem- 
perature of 1800 ~ K. Since there are ( P = )  150 time slices on each atom, 
there are a total of ~4800 degrees of freedom. The long range of the 
dipolar interaction necessitated the use of Ewald summation (27) with the 
outer dielectric chosen to be ~ = ~ .  We chose this outer dielectric constant 
because we did not want to bias the situation against a ferroelectric transi- 
tion. If more particles were used one would expect the choice of outer 
boundary conditions not to be crucial. 

We carried out two kinds of simulations, quenched and annealed 
averages. In an annealed run we let the centers of mass of the atoms read- 
just as we change the electronic states. For  the quenched averages we sam- 
ple a hard sphere configuration, hold this fixed, and then carry out a 
Monte Carlo sampling of the electronic paths. We allow these samples to 
equilibrate vis fi vis electronic structure, gather statistics, and then choose 
new hard-sphere configurations. Comparison of these two kinds allows us 
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to study the importance of clustering in giving the observed behavior. Also, 
several analytic theories suppress clustering, so we wanted to test 
separately the merits of the other approximations made by these theories. 

We calculated several quantities to get ideas about the transition. The 
experimental observable is the dielectric constant. Unfortunately, even for 
classical systems this is a tricky quantity to get right. (27~ However, with our 
boundary conditions the dielectric constant of the sample can be obtained 
from the total moment fluctuations. 

e =  1 + ; ( (0)=  1 + &<M(O).M(z)>dz 

where n is the total dipole moment at "time" ~. The integral over 
imaginary time is the Kubo transform, which, for quantum systems, is 
needed in order to write equilibrium response in terms of correlation 
functions. 

We also calculated the single-particle dipole correlation function 
<it(0). It(fl')>; it is this quantity which comes out most easily from analytic 
treatments of the transition. A pioneering description of the dielectric 
anomaly in terms of the mean spherical approximation (MSA) was put 
forward by Logan and Edward/TM Their theory was based on many studies 
of this venerable approximation/29) The explicit calculations of Logan and 
Edwards were based on the Drude oscillator (harmonic atom) model not 
the lattice atom model. Thus, the comparison of MSA results tells us about 
some of the effects of the detailed level structure--the Drude oscillator hav- 
ing many more excited states than the 1p considered in the 
Turkevich-Cohen scenario. Their work gives the remarkable prediction 
that expanded fluid lithium should also exhibit such an anomaly. 

Two aspects of the dipole correlations are most significant. One is its 
1 B imaginary-time integral ~ ( 0 ) = ~  o &<it(0).it(z)>. This is just the static 

susceptibility. The other quantity 

q = <It(0)' It(fl) >/#2 

tells us whether permanent dipoles have formed. If only a small amount of 
rehybridization exists, q should essentially vanish, q is a littte like a spin 
glass order parameter because it is the "long" time limit of the time- 
correlation function. Another derived quantity is f = ql/2/< I MI/N >. I f f  > 1, 
the new permanent moments have not mutually aligned to any extent; if 
f ~ 1 the configuration is clearly ferroelectric. 

In addition to these quantitative measures we examined snapshots of 
configurations in the system. These give one clear impressions about the 
extent of clustering in the model. By representing the average dipole on 
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these atoms as well (this is roughly the same a s  ql/2), one gets a feeling for 
the degree of rehybridization. 

The MSA-Drude calculation could explain the anomaly with a bare 
mercury polarizability 7o ~ 45au3. We thus did extensive studies with this 
value. The results for the renormalized polarizability ~(0) are shown in 
Fig. 2. The quenched runs are indicated by circles, the annealed with 
triangles. Also indicated are several analytic approximation based on the 
MSA and its extensions; the top solid line is the MSA-Drude result. All the 
analytic results have been corrected for finite size effects inherent in our 32- 
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Fig. 2. The renormalized polarizability of the model fluid. In the inset is shown the pair- 
correlation function at a density of .015 ~ - 3  and c% = 45au  3. 
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particle Ewald summed system. The MSA-Drude  does not do too badly at 
imitating the annealed results. However, this is fortuitous. Since the MSA 
assumes no clustering it should be compared with quenched results. The 
discrepancy is due to the finite level structure of the lattice atom. When we 
use the optimized random phase approximation (ORPA), (3~ which is an 
extension taking into account the finite level scheme, agreement is 
excellent, as is indicated by the lower solid line in Fig. 2. Thus, this 
example shows the power of Monte Carlo; it can reveal the presence of 
cancelling approximations in analytic theories. 

Because ORPA was found to be reliable for quenched systems, we 
used this to guide our studies. For the lattice atom the excitonic tran- 
sition does not occur at Cto=45au 3 for quenched configurations. The 
ORPA suggested a transition at ao"~ 125au3 and p =.012/~ 3. Simulations 
confirmed this. 

In Table I we summarize our runs vis-a-vis our quantitative measures 

Table I. o (o ) /oo ,  q, E, and f as a Funct ion of Density  and Oo a 

p c% ct(o)/ct o q ~ f 

.001 45 1.01(.06) -.003(.010) 1.03(.01 ) 0 

.005 1.06( .06 ) .001 (.006) I. 15 (.03) 0 

.010 1.04(.07) .003(.008) 1.22(.060) 0 

.015 1.02(.03 ) - .004(.009) 1.56(. 14) 0 

.020 1.05(.05) .002(.011) 1.36(.04) 0 

.025 1.05(.05) .000(.008) 1.65(12) 0 

.030 1.07(.07) .000(.010) 2.20(.23 ) 0 

.035 1.11 (.09) .003 (.009) 2.53(.22) 0 

.005 45 1.15(.09) -.003(.013) 1.53(.03) 0 

.010 1.16(.09) .000(.011 ) 3.03(.62) 0 

.015 1.27 .003 3.43(.29) 0 

.020 1.34 .0000 4.83(.35) 0 

.025 1.35 - .003 8.82(.72) 0 

.030 1.33 - .001 9.21(1.33) 0 

.035 1.40 .004 15.5(1.34) 0 

.0075 125 1.23(.15) -.002(.015) 2.63(.37) 0.0 

.010 1.25(.17) -.002(.020) 4.16(.49) 0.0 

.011 1.31(.18) - .019( .024)  4.00(.41 ) 0.0 

.0125 2.74(.38) .065(.026) 21.64(2.47) 1.7 

.015 3.65 (.47) .107 (.032) 20.30(1.70) 2.4 

.020 5.66(.44) .202(.031 ) 20.29(1.78) 1.2 

a q, e, and f are defined in the text. Errors are indicated in parenthesis. The first two sets of 
numbers use hard sphere nuclear configurations, the last set was obtained allowing the 
nuclei to move. p is in units of ~, -3, and c~ o is in units of a u  3. 
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Fig. 3. A shapshot from the Monte Carlo run at p = .015 ~-3 and % = 125au 3. The length of 
the lines in the atoms indicates the size of the time-averaged dipole moment. 

e(0), q, 8, and f. The quenched ~o=45au 3 runs just discussed do n o t  
show a transition. The last set of eo = 125au 3 runs show a marked 
transition, q takes a large jump at p ~.0125A -3 and e jumps from 4 to 
approximately 20. The f value shows alignment but is rather noisy and 
only at the highest density is the system clearly ferroelectric. Snapshots 
clearly show the alignment (see Fig. 3). 

What  of the annealed runs? The c~ o = 4 5 a u  3 runs do not show an 
excitonic transition. They do, however, exhibit clustering as exhibited in 
the pair-distribution function (see inset of Fig. 2.) There is also an enhan- 
cement of e due to clustering, but this is not nearly so rapid as at an 
excitonic transition. If we use ~o= 150au3 the excitonic transition does 
occur, but now the intermolecular forces are so strong that clustering takes 
place with a vengeance. In fact, solidification ensues with the system collap- 
sing into a crystalline cluster. Thus our model does have the possibility of 
exhibiting an excitonic transition, but apparently not in the fluid state. This 
point cannot be made too dogmatically, however, since we have not done a 
full parametric search, and the balancing of these two transitions may be 
delicate. (An intermediate value of ~ just might bring the balancing act off.) 
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5. D I S C U S S I O N  

Our lattice atom model of expanded fluid mercury has not settled the 
experimental puzzles. One nice aspect of our study is that it does show the 
subtleties that can arise from coupled quantum phase transitions. This 
subtlety is not fully appreciated in other attempts. Another feature which 
our study illustrates is how Monte Carlo, when combined with analytic 
theory and qualitative ideas, can allow us to dissect a phenomenon and 
learn about the adequacy of various approximations made in theories 
and models. 

Clearly much more elaborate models can and must be developed. The 
role of the triplet excitations must be explored. The sensitivity to the core 
potential and assumptions about the electron-electron interaction must be 
addressed. Models which allow a true metal-insulator transition should 
also be examined. 

Whole families of models along these lines can be investigated. We 
anticipate that their investigation will be fun and, hopefully, enlightening. 
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